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Hub and Spoke Model for Analytics
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The Evolution of
Analytics at
Canada Post:

Going Beyond
Prediction
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Data Literacy

* Need to understand:
 The type of data you have
* Census
e Attempted census
* Random sample
* Convenience sample

* When to use statistical testing




Gap in Sampling Knowledge

Data Scientist recruiting quiz question that nearly everyone gets wrong

8. A company sent out an online satisfaction survey to all of its customers. Only 1200 out of all 7000
customers completed the survey within the time frame. In this case, the data collected would be
considered:

A convenience sample
A biazed sample

A stratihed sample

An attempted census '

9. In the above example, only about 17% of customers completed the survey. How would this low
response rate impact the margin of error for the study?

® °0% people answered "The
margin of error would be much
larger than expected” for
question 9



Determining Differences

* There are always two questions to ask when deciding
whether a difference between groups is worth reporting

1) Is the difference statistically reliable?
2) Is the difference big enough to be important?

e Test statistics to determine if differences between groups

are reliable are only appropriate when you have a random
probability sample

* With census data we know the data is reliable so the only
qguestion is: “Is the difference big enough to care about?”




What type of data do | have?

Census data
Do you have
all/virtually all the
data for the
population? Do you have a random
probability sample of |
the population?

Random Sample

Did you invite entire
population to
respond?

Attempted Census

Convenience sample




Diagnostic Analytics
Why did it happen?




Diagnostic Analytics with Classification Models

* We use many types of classification models to
answer business questions
 Random Forest, Adaboost, Gradient Boost
* Detecting Mail Redirection Fraud and other
types of fraud
* What are the biggest risk factors for Letter
Carrier injuries

* Both fraud and injury models have an
imbalanced data problem

 Random Forest
« Causes of Letter Carrier injuries

9 Sept, 2019 | Bl & A, Canada Post



Variables Included in Analysis — Potential Drivers of Injury

/Mail Volume Features \

Parcel
o Lettermail

Neighbourhood mail

- / < N
@mployee Features \ Route Characteristic Features

" I  Distance Walked

« Age

Business point of calls
Tenure |

~ Letter Carrier

* Permanent/Temporary ‘ Iniuri /
njuries

«  Familiarity with Route \ J

\- Regular vs overtime hours

Centralized vs. Door-to-Door

Number of stairs

e Motorized vs. Foot route

o V < /

Weather Features

 Maximum temperature for day
« Total of rain for the previous day
« Total of snow for the previous day

« Total rain and snow for delivery day.

10 Sept, 2019 | Bl & A, Canada Post %



Random Forest Model — Design and Samples

Employee-Route-Days
iInvolving injuries

Employee-Route-Days
4.9 million records

“Clones™ “Offspring”

Synthetic Minority Over-Sampling Technique (SMOTE): The SMOTE technique is Sampling with Replacement SMOTE

preferred over sampling with replacement because i1t uses the information available for existing
group members to assign reasonable new values to the new sample. Rather than merely
replicating existing records in the under-represented population, it 15 creating new unique
members that fit within the logical parameters of the group.

1 Sept, 2019 | Bl & A, Canada Post %




Classic Decision Tree — Random Sample 1
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Classic Decision Tree — Random Sample 2
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Interpreting Results

Test Sample Input
Variable Importance

Tree 1 Tree 2 Tree 600 Variable F - [

(s s ) " variable 8 [
variable A - |
variable £ [

¢ variable D |
Prediction 1 Prediction 2 (...) Prediction 600 variable ¢
W variable ¢ [N
Average All Predictions Variable H [}
0 10 20 30 40 50 60 70

.

Random Forest
Prediction

15 Sept, 2019 | Bl & A, Canada Post %



Drivers of Injuries to LCs

Injury Drivers
L C Tenuwre -

Maxiimum_Temperature -

But how do | make
recommenolations
based on this?

Walksd Distance -
Centralzed POC Index-
Mumber of Staars -

Total Snow PrewvouwsDay -

Foute Familiznty -

16 Sept, 2019 | Bl & A, Canada Post %



Driver #1: Letter Carrier Tenure

Driver # 1- Letter Carrier Tenure

* Injuries most likely during first 2 years as
etter carrier

Q.05

* |njuries still over-indexed up to 5 years into
the job

2.04-

- MNon-injury

Dpns'rl:ﬁ_.-' (Probabilty of InjuryMNon-imjury)

Q.00 -

0 5 W 15 20 25 I 3/ 4D 45
Letter Carrier Tenure in Years

17 Sept, 2019 | Bl & A, Canada Post %



Driver #2: Maximum Dalily Temperature

Driver # 2 Maximum Temperature
0.04- .

* Injuries most likely to occur when
temperature is around freezing

0.03-

« Days with a high of 2 degrees Celsius have
highest threat of injuries

0.02 -

I ngury
MNon-injury

Density (Frobabilty of InjuryM™on-injury )

0.00 -

25 20 A% -0 -5 O <] w 13 20 5 W 3B 4

Maximum Temperature (C)
18 Sept, 2019 | Bl & A, Canada Post



Driver #3: Distance Walked on Route

Driver # 3- Walked Distance

* Longer routes in walked distance (not time)
Increase risk of injuries

* The tipping point for route length is about
25K feet.

=
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[ Imjury
! Non-injury

0.01-

Density (Probabilty of InjuryM™on-injury)

0.00-

19 0 8 10 15 20 2 XN I 40 45 N 55 00 6
Walked Distance (in 1000 feet)







Predictive
Analytics -

Forecasting

* Predicting future parcel volume nationally and by plant
* Based on past volume seasonal trends & business insights
 Time-Series Model

e Seasonality, day of the week

|l Split B

| I split A+B+C+D

M SpiitA N

B spitC
Split D

2010 1 2020 i 2021 " 2022 " 2023

21



Plant % Difference

40 41 42 43 44 45 46 43 49 30 |51 5

NATIONAL 69
TORONTO GATEWAY 0.2%
Nationally — Within 1.6% of VANCOUVER PPC 1 85

LEO BLANCHETTE

actual HF‘F‘ 12.8%
Plant LEVE| - W'th'” 10% KITCHEMNER MPP 41 6%
. . QUEBEC MPP 9.2%
Evaluating Plants with > 10% difference ST, JOHNS MPP 5 0%
are investigated further ULl mra 8.8%
MONCTON MPP 8.5%
Performance CASKATOON 157
OTTAWA MPP 5.6%
THUNDER BAY MPP 5.1%
® Actual Volum ected Violume solnlalel bl sl 2.3%
T SAINT JOHN MPP 35%
CALGARY MPP 1.5%
SUDBURY MPP -2.4%
. HALIFAX MPP -3.3%
g REGINA MPP -4 2%
VICTORIA MPP 7.3%
WINNIPEG MPP 7.4%
- LONDON MPP -8.6%




Prescriptive Analytics

How can we make things happen?



Prescriptive Analyt

e Peak Season Plant
Management

* Which customers can
we sell more volume to?

* [nduction plant

ics - Simulations
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Prescriptive Analytics - Simulations

* Impact on induction and

destination plants
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Prescriptive Analytics -
Scenarios

* Plant 1 — MAJOR plant with high volume l.mmmm””““"”

* # of backlog days
* When will backlog clear?

2021-11-21
M21-11-L8
2021-12-05
Mdl-14-12
2021-12-19
2021-12-26
2022-01-03
2022010
2022-01-16




Prescriptive Analytics - Scenarios

s [ew Demand

—i PLANT 1
* What if we borrow N -
workers from a 2 B
nearby minor plant | scewror f= N £
to assist in major i 2fomrantz 5 2
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during peak season? |™* - ‘I ‘ “ ” o LA




Prescriptive Analytics - Scenarios

What if we
leverage shift 2
from Plant 2
for just first 3
weeks of peak?

s [yew Demand
Carry Over
e Capability

SCENARIO 1:
Plant 1 leverages
shift 2 from Plant 2
through all of
peak,

ily Demand

P

IIIIII

:

L
‘I
=
'r 'r

PLANT 1

M

E
|

_H

.}

i

PLANT 2

|

Daily Dermand

i1

;

%

:

[ - & 3 3
B i i i i i

5 2 =
= ] =] ]
F F i :

SCENARIO 2:

Plant 1 leverages
shift 2 from Plant 2
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What’s

Beyond
Prescriptive?

Gartner Analytic Ascendancy Model

How can we
make it happen?

What will
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Why did it
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Integrated
Analytics

Beyond Prescriptive Analytics

Business friendly apps to aid
decision making

Machine learning and Al utilized
without need to request

Anticipated in 2024
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